Tag Archive for: engineering

SIR HENRY ROYCE (1863 – 1933): DRIVEN BY PERFECTION

  • Rolls-Royce marks the 160th anniversary of the birth of co-founder Sir Henry Royce
  • A look back at his remarkable life and work reveals a driven, even obsessive character and a relentless work ethic forged in childhood poverty and frequent adversity
  • The quest for perfection extended to every aspect of Royce’s professional and personal life
  • His famous maxim “Strive for perfection in everything you do. Take the best that exists and make it better” still informs and inspires the company’s activities today

“Sir Henry Royce bequeathed to the world an extraordinary legacy of engineering innovation and achievement. He also left us, his successors at Rolls-Royce Motor Cars, an unequivocal instruction: ‘Strive for perfection in everything you do. Take the best that exists and make it better’. Sir Henry himself lived out this maxim in every aspect of his personal and professional life. Today, as we mark the 160th anniversary of his birth, his challenge still informs and inspires everything we do. It serves as a constant reminder that perfection is a moving target: it is never ‘done’. There is always something we can refine, adjust, rework, reinvent or innovate in our pursuit of perfection; and that is what makes our life and work here so exciting.” Torsten Müller-Ötvös, Chief Executive Officer, Rolls-Royce Motor Cars

Sir Henry Royce’s uncompromising command, “Strive for perfection in everything you do. Take the best that exists and make it better” is one of the most famous quotations in automotive history. It is also a maxim that rings down the ages, and still inspires and informs the company that bears his name.

As Rolls-Royce marks the 160th anniversary of Sir Henry’s birth, we look back at his remarkable life and career, in search of the origins of his most celebrated and oft-repeated exhortation. What drove his own lifelong striving for perfection; and how did his relentless, some might say obsessive, desire to improve and refine manifest itself in both his work and domestic spheres?

A LOT TO IMPROVE ON
Royce’s early life was one of hardship, poverty and disadvantage. The youngest of five children, he was born in 1863 into a family in perilous financial circumstances. Matters worsened considerably when his father, a miller, was finally declared bankrupt and, under the law of the time, ended up in prison.

It was against this unpromising backdrop that Royce’s character was formed. Yet he was determined to make a better life for himself, and by the age of just 10 was working in London, first as a newspaper seller and later as a telegram delivery boy.

Things appeared to be moving his way when in 1879, with financial support from his aunt, he secured a coveted apprenticeship at the Great Northern Railway (GNR) workshops in Peterborough. Instantly and obviously in his element, his natural aptitude for design and innate skill with tools and materials quickly become apparent. One early indicator of his talent was a set of three miniature wheelbarrows he made in brass; these pieces clearly demonstrate the exemplary standard of workmanship and quest for excellence he would maintain throughout his life.

VICISSITUDES
Royce’s drive for self-improvement came to an abrupt halt after two years, when his aunt was unable to pay his annual apprenticeship fee. Undaunted, Royce returned to London and, in 1881, began work at the fledgling Electric Lighting & Power Generating Company (EL&PG).

His decision to forsake traditional engineering for the emerging field of electricity was essentially a pragmatic one. Electricity was then so new it had no governing body or professional institutions, and thus no examinations to pass or standards to attain. Unlike in engineering, therefore, Royce’s lack of formal qualifications was no barrier to his progress.

His fascination for the subject, already formidable work ethic and commitment to study (he attended evening classes in English and Mathematics after work) meant that in 1882, the EL&PG, by now renamed the Maxim-Weston Electric Company, sent him to work for its subsidiary in Lancashire as First (Chief) Electrician, responsible for street and theatre lighting in the city of Liverpool. Yet again, however, circumstances conspired against him: through gross mismanagement in its acquisition of patents, the company abruptly went into receivership and Royce, aged only 19, found himself unemployed once more.

TAKING CHARGE
Although the parent company of his erstwhile employer chose to salvage what it could rather than sell off the remaining resources, Royce had had enough. Impelled by his innate drive, clear appetite for (calculated) risk and the abundant self-assurance noted by his contemporaries, he started up in business on his own.

In late 1884, he founded F H Royce & Co (he was christened Frederick Henry) in Manchester. Initially producing small items such as battery-powered door bells, the company progressed to making heavy equipment such as overhead cranes and railway shunting capstans.

But while the business was thriving, Royce himself was not. By 1901, his years of overwork and a strained home life were taking a severe toll on his health, which had probably been fundamentally weakened by the privations of his childhood.

His doctor persuaded him to buy a De Dion quadricycle as a way to escape the office and enjoy some fresh air; but before long, Royce’s health collapsed. A major contributing factor was his growing concern that the company was heading into financial problems; something that would perhaps have had particular significance for him given his father’s experiences.

The company owed its dwindling fortunes to an influx of cheap, or at least cheaper, electrical machinery from Germany and the USA that was able to undercut Royce’s prices. Ever the perfectionist, Royce himself was not prepared to enter a race to the bottom or compromise the quality of his products.

Complete rest was required, and he was eventually persuaded to take a 10-week holiday to visit his wife’s family in South Africa. On the long voyage home, he read ‘The Automobile – its construction and management’. The book would change his life – and ultimately, the world.

MAKING THE BEST BETTER
On his return to England, Royce ­– now fully revitalised both mentally and physically – immediately acquired his first motor car, a 10 H.P. Decauville. Given the still-parlous state of his company’s finances, this might have seemed a frivolous squandering of precious funds; but in fact, this purchase was a shrewd and calculated one that, in his mind, held the key to the company’s future prosperity.

The story usually goes that this first car was so poorly made and unreliable that Royce decided he could do better. In fact, his holiday reading had already focused his mind on producing his own car from scratch; he had already supplied a limited number of electric motors for the ‘Pritchett and Gold’ electric car. So contrary to the received wisdom, he chose the Decauville precisely because it was the finest car available to him, in order to dismantle it and then, in his most famous phrase, “take the best that exists and make it better”.

He began by building three two-cylinder 10 H.P. cars based on the Decauville layout. That he was the only person who believed this new direction could save the company is another sign of his tenacity and self-belief. Just as importantly, his attention to detail in design and manufacture, accompanied by a continuous review of components after analysis, set the production template he would follow until his death.

These first examples were followed by the three-cylinder 15 H.P., four-cylinder 20 H.P. and six-cylinder 30 H.P. – each of which represented significant advances in automotive design. In 1906, two years after the founding of Rolls-Royce, Managing Director Claude Johnson persuaded Royce to adopt a ‘one model’ policy. In response, Royce designed the 40/50 H.P. ‘Silver Ghost’, the car that rightly earned the immortal soubriquet “the best car in the world”.

The Silver Ghost demonstrated Royce’s almost uncanny instinct for using the right materials for components, long before scientific analysis could provide reliable data. He also worked out that the properties of fluids alter with speed, so designed the Silver Ghost’s carburettor with three jets that came into play at different throttle openings, thereby eliminating ‘flat spots’.

HOME AND AWAY
By 1906 it was obvious that Rolls-Royce’s Cooke Street works in Manchester could no longer accommodate the company’s rapidly expanding motor car production. Rolls-Royce acquired a site on Nightingale Road in Derby, where Royce designed and oversaw the building of a brand-new, purpose-built factory. He undertook this enormous and technically complex task on top of his normal workload, and demanded his customary exacting standards from all concerned, not least himself.

Given the relentless volume and pace of his work, Royce’s second serious health crisis in 1911 came as little surprise. Rest was again prescribed, and during the summer and autumn, Johnson drove him on a road trip that extended as far as Egypt. On the return journey, they stopped in the south of France, where Royce took a strong liking for the tiny hamlet of Le Canadel, near Nice. Ever the man of action, Johnson bought a parcel of land and commissioned a new house for Royce, plus a smaller villa for visiting draughtsmen and assistants. Royce himself naturally took a keen interest in the building work, basing himself in a nearby hotel.

His health, however, remained fragile. After a relapse which led to emergency surgery in England, he returned to the now-finished house to recuperate. For the rest of life, he (very sensibly) spent his winters at Le Canadel and the summers in the south of England.

From 1917, his English residence was Elmstead, an 18th-Century house in the village of West Wittering on the Sussex coast, just eight miles from the present-day Home of Rolls-Royce at Goodwood. Elmstead had some adjoining land, where Royce resumed his long-standing interest in fruit farming. Inevitably, he brought his desire for perfection to this activity, too, and he quickly became a leading expert in many aspects of farming and horticulture.

His domestic life at Elmstead throws further light on his perfectionist nature, which focused his attention on even the smallest actions of others. For example, any aspiring cook would be employed only if they boiled potatoes in the ‘right’ way – just as an unfortunate labourer in the Cooke Street works was once admonished and shown how to use a broom correctly.

A REMARKABLE LEGACY
Whether he was designing car components or aircraft engines, Royce’s search for perfection never waned; yet even he acknowledged that it was, in fact, unattainable. His mantra for his drawing-office staff was ‘Rub out, alter, improve, refine’, and that process of constant improvement and development led to some of his greatest engineering achievements. Under his direction, the Buzzard aero engine built in 1927 with an initial output of 825 H.P. was transformed in just four years into the Schneider Trophy-winning ‘R’ engine that, in its final form, was capable of producing 2,783 H.P. And his outline design for a V12 engine would appear almost unaltered in the Phantom III of 1936, three years after his death. An instinctive, intuitive engineer, he was a firm believer that if something looked right, it probably was right. His extraordinary ability to assess components by eye alone proved infallible time and time again.

Royce’s tendency to overwork, often at the expense of his own health, was a symptom of his quest for perfection, and a will to achieve it forged in hardship and adversity. He was a highly driven – some might say obsessive – man who overcame many setbacks and misfortunes, and applied his meticulous engineer’s eye, inquisitive mind and relentless work ethic to every aspect of his life. And such is the power of his ethos and legend, they still inform and inspire the company that bears his name 160 years after his birth.

                                                                               


Rolls-Royce Motor Cars is a wholly-owned subsidiary of the BMW Group and is a completely separate company from Rolls-Royce plc, the manufacturer of aircraft engines and propulsion systems. 2,500 skilled men and women are employed at the Rolls-Royce Motor Cars’ head office and manufacturing plant at Goodwood, West Sussex, the only place in the world where the company’s super-luxury motor cars are hand-built.

FURTHER INFORMATION
You can find all our press releases and press kits, as well as a wide selection of high resolution, downloadable photographs and video footage at our media website, PressClub.
You can also follow marque on social media: LinkedInYouTube; TwitterInstagram; and Facebook.

IBM-Q-One

Dando un salto cuántico, la inteligencia artificial (IA) es una tecnología clave para la industria automotriz

Cada vez más funciones de los vehículos se basan en la inteligencia artificial. Sin embargo, los procesadores convencionales e incluso los chips gráficos están llegando cada vez más a sus límites en lo que respecta a los cálculos necesarios para las redes neuronales. Porsche Engineering informa sobre nuevas tecnologías que acelerarán los cálculos de IA en el futuro.

La inteligencia artificial (IA) es una tecnología clave para la industria automotriz, y el hardware rápido es igualmente importante para los complejos cálculos de back-end involucrados. Después de todo, en el futuro solo será posible llevar nuevas funciones a la producción en serie con computadoras de alto rendimiento. “La conducción autónoma es una de las aplicaciones de IA más exigentes de todas”, explica el Dr. Joachim Schaper, Gerente Senior de IA y Big Data en Porsche Engineering. “Los algoritmos aprenden de una multitud de ejemplos recopilados por vehículos de prueba que utilizan cámaras, radares u otros sensores en el tráfico real”.

Dr. Joachim Schaper, gerente sénior de IA y Big Data en Porsche Engineering

dr. Joachim Schaper, Gerente Senior de IA y Big Data en Porsche Engineer

Los centros de datos convencionales son cada vez más incapaces de hacer frente a las crecientes demandas. “Ahora lleva días entrenar una sola variante de una red neuronal”, explica Schaper. Entonces, en su opinión, una cosa está clara: los fabricantes de automóviles necesitan nuevas tecnologías para los cálculos de IA que puedan ayudar a que los algoritmos aprendan mucho más rápido. Para lograr esto, se deben ejecutar en paralelo tantas multiplicaciones de matriz vectorial como sea posible en las complejas redes neuronales profundas (DNN), una tarea en la que se especializan las unidades de procesamiento de gráficos (GPU). Sin ellos, los increíbles avances en IA de los últimos años no habrían sido posibles.

50 veces el tamaño de una GPU

Sin embargo, las tarjetas gráficas no se diseñaron originalmente para el uso de IA, sino para procesar datos de imagen de la manera más eficiente posible. Están cada vez más al límite cuando se trata de algoritmos de entrenamiento para la conducción autónoma. Por lo tanto, se requiere hardware especializado en IA para cálculos aún más rápidos. La empresa californiana Cerebras ha presentado una posible solución. Su Wafer Scale Engine (WSE) se adapta de manera óptima a los requisitos de las redes neuronales al combinar la mayor potencia informática posible en un chip de computadora gigante. Es más de 50 veces el tamaño de un procesador de gráficos normal y ofrece espacio para 850 000 núcleos informáticos, más de 100 veces más que en una GPU superior actual.

Además, los ingenieros de Cerebras han conectado en red los núcleos computacionales junto con líneas de datos de gran ancho de banda. Según el fabricante, la red del Wafer Scale Engine transporta 220 petabits por segundo. Cerebras también ha ampliado el cuello de botella dentro de las GPU: los datos viajan entre la memoria y la unidad de cómputo casi 10 000 veces más rápido que en las GPU de alto rendimiento, a 20 petabytes por segundo.

 

Chip gigante: el Wafer Scale Engine de Cerebras combina una enorme potencia informática en un solo circuito integrado con una longitud lateral de más de 20 centímetros.

Chip gigante: el Wafer Scale Engine de Cerebras combina una enorme potencia informática en un solo circuito integrado con una longitud lateral de más de 20 centímetros.

Para ahorrar aún más tiempo, Cerebras imita un truco del cerebro. Allí, las neuronas funcionan solo cuando reciben señales de otras neuronas. Las muchas conexiones que están actualmente inactivas no necesitan ningún recurso. En las DNN, por otro lado, la multiplicación de matriz vectorial a menudo implica multiplicar por el número cero. Esto cuesta tiempo innecesariamente. Por lo tanto, Wafer Scale Engine se abstiene de hacerlo. “Todos los ceros se filtran”, escribe Cerebras en su libro blanco sobre el WSE. Entonces, el chip solo realiza operaciones que producen un resultado distinto de cero.

Un inconveniente del chip es su alto requerimiento de energía eléctrica de 23 kW y requiere refrigeración por agua. Por lo tanto, Cerebras ha desarrollado su propia carcasa de servidor para su uso en centros de datos. El Wafer Scale Engine ya se está probando en los centros de datos de algunos institutos de investigación. El experto en inteligencia artificial Joachim Schaper cree que el chip gigante de California también podría acelerar el desarrollo automotriz. “Al usar este chip, el entrenamiento de una semana podría reducirse teóricamente a unas pocas horas”, estima. “Sin embargo, la tecnología aún tiene que demostrarlo en pruebas prácticas”.

Luz en lugar de electrones

A pesar de lo inusual que es el nuevo chip, al igual que sus predecesores convencionales, también funciona con transistores convencionales. Empresas como Lightelligence y Lightmatter, con sede en Boston, quieren utilizar el medio de la luz mucho más rápido para los cálculos de IA en lugar de la electrónica comparativamente lenta, y están construyendo chips ópticos para hacerlo. Por lo tanto, los DNN podrían funcionar “al menos varios cientos de veces más rápido que los electrónicos”, escriben los desarrolladores de Lightelligence.

“Con Wafer Scale Engine, una semana de entrenamiento teóricamente podría reducirse a solo unas pocas horas”. Dr. Joachim Schaper, gerente sénior de IA y Big Data en Porsche Engineering

Para ello, Lightelligence y Lightmatter utilizan el fenómeno de la interferencia. Cuando las ondas de luz se amplifican o anulan entre sí, forman un patrón claro-oscuro. Si dirige la interferencia de cierta manera, el nuevo patrón corresponde a la multiplicación vector-matriz del patrón anterior. Entonces, las ondas de luz pueden “hacer matemáticas”. Para que esto sea práctico, los desarrolladores de Boston grabaron diminutas guías de luz en un chip de silicio. Como en un tejido textil, se cruzan varias veces. La interferencia tiene lugar en los cruces. En el medio, diminutos elementos calefactores regulan el índice de refracción de la guía de luz, lo que permite que las ondas de luz se desplacen entre sí. Esto permite controlar su interferencia y realizar multiplicaciones vector-matriz.

Sin embargo, las empresas de Boston no prescinden por completo de la electrónica. Combinan sus computadoras livianas con componentes electrónicos convencionales que almacenan datos y realizan todos los cálculos, excepto las multiplicaciones de vectores y matrices. Estos incluyen, por ejemplo, las funciones de activación no lineal que modifican los valores de salida de cada neurona antes de pasar a la siguiente capa.

Computación con luz: el chip Envise de Lightmatter utiliza fotones en lugar de electrones para calcular redes neuronales.  Los datos de entrada y salida son suministrados y recibidos por electrónica convencional.

Computación con luz: el chip Envise de Lightmatter utiliza fotones en lugar de electrones para calcular redes neuronales. Los datos de entrada y salida son suministrados y recibidos por electrónica convencional.

Con la combinación de computación óptica y digital, los DNN se pueden calcular extremadamente rápido. “Su principal ventaja es la baja latencia”, explica Lindsey Hunt, portavoz de Lightelligence. Por ejemplo, esto permite que la DNN detecte objetos en imágenes más rápido, como peatones y usuarios de scooters eléctricos. En la conducción autónoma, esto podría dar lugar a reacciones más rápidas en situaciones críticas. “Además, el sistema óptico toma más decisiones por vatio de energía eléctrica”, dijo Hunt. Eso es especialmente importante ya que el aumento de la potencia informática en los vehículos se produce cada vez más a expensas de la economía de combustible y la autonomía.

Las soluciones de Lightmatter y Lightelligence se pueden insertar como módulos en computadoras convencionales para acelerar los cálculos de IA, al igual que las tarjetas gráficas. En principio, también podrían integrarse en vehículos, por ejemplo, para implementar funciones de conducción autónoma. “Nuestra tecnología es muy adecuada para servir como motor de inferencia para un automóvil autónomo”, explica Lindsey Hunt. El experto en inteligencia artificial Schaper tiene una opinión similar: “Si Lightelligence tiene éxito en la construcción de componentes adecuados para automóviles, esto podría acelerar en gran medida la introducción de funciones complejas de inteligencia artificial en los vehículos”. La tecnología ya está lista para el mercado: la compañía está planeando sus primeras pruebas piloto con clientes en el año 2022.

La computadora cuántica como un turbo AI

Las computadoras cuánticas están algo más alejadas de la aplicación práctica. Ellos también acelerarán los cálculos de IA porque pueden procesar grandes cantidades de datos en paralelo. Para ello, trabajan con los llamados “qubits”. A diferencia de la unidad de información clásica, el bit, un qubit puede representar los dos valores binarios 0 y 1 simultáneamente. Los dos números coexisten en un estado de superposición que solo es posible en la mecánica cuántica.

“Cuanto más complicados son los patrones, más dificultad tienen las computadoras convencionales para distinguir clases”. Heike Riel, directora de IBM Research Quantum Europa/África

Las computadoras cuánticas podrían impulsar la inteligencia artificial cuando se trata de clasificar cosas, por ejemplo, en el tráfico. Hay muchas categorías diferentes de objetos allí, incluidas bicicletas, automóviles, peatones, señales, carreteras secas y mojadas. Difieren en términos de muchas propiedades, razón por la cual los expertos hablan de “reconocimiento de patrones en espacios de dimensiones superiores”.

“Cuanto más complicados son los patrones, más difícil es para las computadoras convencionales distinguir las clases”, explica Heike Riel, quien dirige la investigación cuántica de IBM en Europa y África. Eso se debe a que con cada dimensión, se vuelve más costoso calcular la similitud de dos objetos: ¿Qué tan similares son un conductor de e-scooter y un usuario de andador tratando de cruzar la calle? Las computadoras cuánticas pueden funcionar de manera eficiente en espacios de alta dimensión en comparación con las computadoras convencionales. Para ciertos problemas, esta propiedad podría ser útil y dar como resultado que algunos problemas se resuelvan más rápido con la ayuda de las computadoras cuánticas que con las computadoras convencionales de alto rendimiento.

Heike Riel, directora de IBM Research Quantum Europa/África

Heike Riel, directora de IBM Research Quantum Europa/África

Los investigadores de IBM han analizado modelos estadísticos que se pueden entrenar para la clasificación de datos. Los resultados iniciales sugieren que los modelos cuánticos inteligentemente elegidos funcionan mejor que los métodos convencionales para ciertos conjuntos de datos. Los modelos cuánticos son más fáciles de entrenar y parecen tener una mayor capacidad, lo que les permite aprender relaciones más complicadas.

Riel admite que, si bien las computadoras cuánticas actuales se pueden usar para probar estos algoritmos, aún no tienen una ventaja sobre las computadoras convencionales. Sin embargo, el desarrollo de las computadoras cuánticas avanza rápidamente. Tanto el número de qubits como su calidad aumentan constantemente. Otro factor importante es la velocidad, medida en operaciones de capa de circuito por segundo (CLOPS). Este número indica cuántos circuitos cuánticos pueden ejecutarse en la computadora cuántica por vez. Es uno de los tres criterios de rendimiento importantes de una computadora cuántica: escalabilidad, calidad y velocidad.

En un futuro previsible, debería ser posible demostrar la superioridad de las computadoras cuánticas para ciertas aplicaciones, es decir, que resuelven problemas de manera más rápida, eficiente y precisa que una computadora convencional. Pero la construcción de una computadora cuántica potente, con errores corregidos y de propósito general aún llevará algún tiempo. Los expertos estiman que llevará al menos otros diez años. Pero la espera podría valer la pena. Al igual que los chips ópticos o las nuevas arquitecturas para computadoras electrónicas, las computadoras cuánticas podrían ser la clave de la movilidad del futuro.

En breve

Cuando se trata de cálculos de IA, no solo los microprocesadores convencionales, sino también los chips gráficos, ahora están llegando a sus límites. Por lo tanto, empresas e investigadores de todo el mundo están trabajando en nuevas soluciones. Los chips en formato oblea y los ordenadores ligeros están cerca de hacerse realidad. En unos años, estos podrían complementarse con computadoras cuánticas para cálculos particularmente exigentes.

1
COMPARTE
90 years of engineering services by Porsche: Milestones

Innovative by tradition: 90 years of engineering services by Porsche

Weissach. Porsche has been a sports car manufacturer for more than seven decades. However, technological innovations under the Porsche name go back much further: Ferdinand Porsche founded his design office in Stuttgart on 25 April 1931 and had it entered in the commercial register. Since then, the Porsche name has been closely associated with customer development projects. Today, the tradition of engineering services is successfully continued by Porsche Engineering, a wholly owned subsidiary of Porsche AG, with innovative solutions and a high level of digitalization expertise.

Porsche has been driving technological innovations on behalf of customers for 90 years. What Ferdinand Porsche began with pioneering work such as the Volkswagen is being continued at Porsche Engineering since 2001 as a separate legal company and with a focus on technologies for the intelligent and connected vehicle of the future. “The importance of software in the vehicle and vehicle environment is growing all time,” explains Michael Steiner, Member of the Executive Board for Research and Development at Porsche AG and Chairman of the Shareholders’ Committee of Porsche Engineering. “The challenge these days is to combine detailed vehicle understanding with strong software expertise. Porsche Engineering is a pro at this and is therefore of great value to us as a strategic development partner.”

The engineers and software developers analyze global and local market trends, further develop technologies and methods, give impetus to innovative ideas and put those ideas into series production for their customers. “Thanks to getting an early start on areas such as electromobility and high-voltage systems, highly automated driving functions, networking and artificial intelligence, we are now in a position to develop solutions for the full range of mobility requirements of tomorrow,” adds Peter Schäfer, CEO of Porsche Engineering. “We have evolved from a design office into a tech company.”

Porsche Engineering has established an international development network with almost 1,500 employees at locations in Germany, the Czech Republic, Romania, Italy and China. And it’s not only the parent company which draws on this expertise. As a strategic partner, Porsche Engineering also develops new, forward-looking systems and functions for other brands of the Volkswagen Group, other automobile manufacturers, automotive suppliers and even companies outside the automotive industry.

And just like it was 90 years ago, anyone developing advanced solutions must always be one step ahead of the present. Ferdinand Porsche was a pioneer in the mechanical development of new vehicles and vehicle systems, and today Porsche Engineering combines this tradition with in-depth digital expertise. Although the possibilities are different today than they were 90 years ago, the mission remains unchanged: to develop the mobility of the future.

About Porsche Engineering
Porsche Engineering Group GmbH is an international technology partner to the automotive industry. The subsidiary of Dr. Ing. h.c. F. Porsche AG is developing the intelligent and connected vehicle of the future for its customers – including functions and software. Some 1,500 engineers and software developers are dedicated to the latest technologies, for example in the fields of highly automated driving functions, e-mobility and high-voltage systems, connectivity and artificial intelligence. They are carrying the tradition of Ferdinand Porsche’s design office, founded in 1931, into the future and developing the digital vehicle technologies of tomorrow. In doing so, they combine in-depth vehicle expertise with digital and software expertise.


90 years of engineering services by Porsche: Milestones

Company
1931: Founding of the Porsche design office
At the height of the world economic crisis, on 25 April 1931, the “Dr. Ing. h.c. F. Porsche Gesellschaft mit beschränkter Haftung, Konstruktion und Beratung für Motoren- und Fahrzeugbau” (Dr. Ing. h.c. F. Porsche Ltd., Design and Consultancy Company for Engine and Vehicle) was entered in the Stuttgart commercial register. In addition to Ferdinand Porsche, who invested 24,000 Reichsmark in seed capital in the burgeoning corporation, his son-in-law Dr. Anton Piëch and Adolf Rosenberger become managing partners with contributions of 3,000 Reichsmark each. In the 1930s, Porsche’s enterprise became one of the most important pillars of automotive technology and at the same time paved the way for German mass motorization.

1961: Ground-breaking ceremony for the Porsche testing grounds
In the 1950s, increasingly complex vehicle development led to the decision to build a dedicated test track, which was to be designed according to the wishes of the testing departments. On 16 October 1961, ground was broken for the construction of the facilities in the Weissach and Flacht districts, 25 kilometers west of Stuttgart. A circular track called “skid pad” was built to test driving behavior and lateral acceleration, as well as two circuits. Other special sections were also built, including the pothole and rough pavement sections.

From 1971: Establishment of the Weissach Development Center (EZW)
At the end of the 1960s, plans for the Porsche Development Center Weissach (EZW) began to take shape. In the autumn of 1971, the entire development department, including design, was relocated from Zuffenhausen to Weissach. From 1974 onwards, a building in the shape of a standard hexagon was constructed, which ensured perfect working and collaboration capabilities. The following years saw the successive expansion of the EZW. The Measuring Center for Environmental Technology (MZU) was equipped with six exhaust gas test benches in 1982. Construction of the test building for engines (PMA) began in 1983. In May 1986, Porsche opened what was then the world’s most modern wind tunnel. The third construction phase was completed on 29 September 1986 with an extensive crash facility. The new facility offered modern testing capabilities with weather-independent test conditions and could be flexibly adapted to new testing techniques.

1996: Founding of Porsche Engineering Services GmbH (PES)
In October 1996, Porsche Engineering Services GmbH was founded as a separate legal company for Porsche’s well-established engineering activities for external customers. Since then, the Bietigheim-Bissingen location has been an important center for Porsche Engineering’s project teams.

2001: Founding of the Porsche Engineering Group GmbH (PEG)
In 2001, Porsche Engineering Group GmbH (PEG) was founded as the central holding company for engineering services by Porsche. The Weissach-based wholly owned subsidiary of Porsche AG coordinates worldwide development projects. Thanks to the networking of Porsche Engineering locations in Germany and abroad, Porsche Engineering engineers are able to develop solutions for a wide range of requirements.

2001: Porsche Engineering Prague location
Porsche Engineering took its first step on the road to international expansion in 2001 with the opening of the company location in Prague. Specializing in complex technical calculations and simulations, Porsche Engineering Services, s.r.o., with its focus on electromobility, connectivity systems, advanced driver assistance systems and vehicle structures, is now a key component of Porsche Engineering’s international engineering capacity.

2012: Acquisition of the Nardò Technical Center
With the Nardò Technical Center in Apulia in southern Italy, Porsche acquired one of the world’s best-known automotive testing grounds in 2012. Since then, the testing facility has been operated by Porsche Engineering. The 700-hectare grounds feature more than 20 test tracks, including a 6.2-kilometer handling track, a 12.6-kilometer circuit, dynamics surfaces, acoustics and off-road tracks, and numerous workshops. Porsche Engineering also offers on-site engineering services.

2014: Subsidiary in China
Engineering services for Chinese customers have a long history at Porsche. Projects have been carried out for more than 20 years. In 2014, Porsche Engineering founded a subsidiary in Shanghai. Since then, the location has been the interface to local companies, but also a strategic partner for Porsche developments for the Chinese market. It specializes in chassis, electronic components and systems, test automation, rapid charging and technology scouting.

2016: Founding of Porsche Engineering Romania
Porsche Engineering expanded its in-house expertise in the field of digitalization in 2016 by establishing Porsche Engineering Romania. The Cluj-Napoca location specializes in software and function development, with close links to the other Porsche Engineering units. Laboratories for software and hardware are available for testing.

2018: Ostrava location in the Czech Republic
Since 2018, an office in Ostrava in the Czech Republic has strengthened Porsche Engineering’s expertise in the field of software development.

Developments “Made by Porsche”
1931: Porsche Type 7 for Wanderer
The design office received its first official order from the automobile manufacturer Wanderer in the spring of 1931. In an extremely short development time, Porsche designed a six-cylinder engine with an initial displacement of 1.5 liters and the corresponding chassis with a swing axle. Built as the Wanderer W21 and W22, the model, known internally as the Type 7, was distinguished by its innovative light-alloy engine.
The Porsche torsion bar suspension, used for the first time in automobile construction, would prove a trend-setting development in chassis technology.

1933: Porsche Type 22 Auto Union race car
In the spring of 1933, Ferdinand Porsche was commissioned by Auto Union to develop a 16-cylinder race car. The first test drives with the Auto Union race car took place in November 1933, and during its first season in 1934 it set three world records and won several hillclimb races as well as three international Grand Prixs.

1934: Porsche Type 60
The impetus for the design of the now world-renowned Volkswagen “Beetle” came in 1934, when the Reich Association of the German Automobile Industry commissioned Ferdinand Porsche to design and build a German Volkswagen or “People’s Car.” In 1936, the Reich government decided to build its own factory for the Volkswagen, which Ferdinand Porsche was also commissioned to plan.

1938: Porsche Type 64
In 1938, the Porsche design office received an order from Volkswagen to develop a racing car based on the Porsche Type 60, which was to compete in a planned long-distance race from Berlin to Rome. Under the internal designation Type 64, Porsche engineers developed three racing coupés by the spring of 1939. With a streamlined aluminum body, covered wheel arches and a modified Volkswagen boxer engine, the car, which weighed around 600 kilograms, reached over 140 kilometers per hour.

1947: Porsche Type 360 for Cisitalia
The first large order of the post-war period came from the Italian company Cisitalia. The result, the Type 360 race car completed in 1947, featured a state-of-the-art chassis with double longitudinal control arms at the front and a double-joint swing axle at the rear, as well as an all-wheel drive.

1952: Porsche Type 542 for Studebaker
Between 1952 and 1954, Porsche developed a four-door sedan with a self-supporting body in a modern pontoon design for the US car manufacturer Studebaker. Porsche engineers designed a six-cylinder, three-liter engine and an output of 78 kW (106 hp), which they tested in both air-cooled and water-cooled variants.

1973: Long-term car research project
The long-life car research project (FLA) commissioned by the German Federal Ministry for Research and Technology (BMFT), was developed as an automobile concept adapted to the changed environmental conditions. Porsche developed the concept car, internally known as Type 1989, with the aim of maximizing resource conservation. It was designed for a useful life of twenty years and a mileage of at least 300,000 kilometers. The basic idea included not only a targeted selection of materials but also the deliberate reduction of wear and tear on technical components.

1981: Collaboration with Linde
As a follow-up to its commissioning of planetary and chain drives, in 1981 warehouse technology specialist Linde Material Handling entrusted Porsche with the overall design of a new generation of forklifts. In addition to the functional design of the vehicle, the engineers paid particular attention to the development of a new driver’s seat concept based on ergonomics research.

1983: TAG Turbo Formula 1 engine
Thanks to financial support from Saudi Arabian businessman Mansour Ojjeh, the British racing team McLaren was able to commission the development of a Formula 1 turbo engine in Weissach. The engine, which could produce up to 1000 hp, made its debut in the 1983 season, was virtually unbeatable between 1984 and 1986 and helped McLaren win three drivers’ and two constructors’ world championship titles.

1990: Mercedes-Benz 500 E
In 1990, the engineers from Porsche created a particularly powerful version of the Mercedes W124 for Mercedes-Benz, equipped with a 5-liter V8 four-valve engine. Porsche was responsible for the entire project up to small-series production at Porsche in Stuttgart-Zuffenhausen.

1993: Audi Avant RS2
Audi and Porsche jointly developed a high-performance sports station wagon, which was presented in autumn 1993 under the name Audi Avant RS2. The 232 kW (315 hp) RS2 variant was built in Weissach using numerous components from the Porsche range.

1994: Opel Zafira
When the Rüsselsheim-based car manufacturer Opel wanted to enter the growing market for compact MPVs, it commissioned Porsche to develop the Zafira based on the Astra model in 1994. Porsche engineers designed the body-in-white, adapted the powertrain, suspension and electrics, and took over prototype construction, vehicle testing and production planning.

2002: Racing luge for Georg Hackl
Porsche Engineering developed a competition sled for luger Georg Hackl in which he could change the damping while driving and thus achieve a higher cornering speed. The result: a Silver medal for “Hackl Schorsch” at the 2002 Winter Olympics in Salt Lake City (USA).

2007: Cayago Seabob
The Seabob from the manufacturer Cayago is designed for battery-powered fun on the water’s surface and in the depths below. In 2007, Porsche Engineering engineers developed three electronic components for the water sports device: the battery manager, the motor control unit and the control panel with graphic display.

Since 2014: High-voltage technology for electric vehicles
For high-performance electric vehicles, Porsche Engineering develops drive systems and other solutions based on innovative 800-volt technology. In doing so, Porsche Engineering is building on a wide range of experience gained with the Porsche 919 Hybrid, for example. Porsche Engineering developed the complete energy storage system for the LMP1 prototype – from the mechanical structure to the complete system control and testing. The battery system of the 919 Hybrid paved the way for the introduction of the trend-setting 800-volt architecture in the Porsche Taycan, which today helps the electric vehicle to achieve its outstanding driving performance.

2016: Scania S-series and R-series
Porsche Engineering developed a completely new generation of cabins, including the necessary production processes, for the new model series of heavy commercial vehicles from Swedish manufacturer Scania, which was unveiled in 2016. With their expertise in the development of decidedly stiff and light body structures, the Porsche engineers developed a particularly crash-proof cabin bodyshell utilizing steels of various strength levels.

2019: Cayenne Coupé
In 2019, Porsche unveiled the Coupé variant of the successful Cayenne series, for which Porsche Engineering acted as general contractor for the overall vehicle development. The project included control of the complete process as well as development of the individual assemblies, validation of the technical properties and support during the run-up to production. In the implementation, Porsche Engineering primarily used simulation and virtual development tools instead of time-consuming and cost-intensive tests of real components and vehicles.

Since 2019: Virtual ADAS development methodology
Porsche Engineering has created a simulation environment in which functions of Advanced Driver Assistance Systems (ADAS) can be trained and tested virtually. Among other tools, programmers use game engines for this purpose. Game engines are software tools that are actually intended for graphical and physical simulation in computer games, but are also suitable for ADAS development due to their realistic reproduction of driving conditions. Within a very short time, the software experts can run through complex traffic scenarios, change parameters such as sunlight, weather conditions or the behavior of other road users at the push of a button, and also cover borderline situations that could not be recreated with real tests on the road, or only at a high risk.

2020: MAY sunshades
Due to their large contact surfaces, sunshades are subject to strong forces even at low wind strengths. In order to ensure the stability of the individual components and the overall construction, the MAY sunshades were subjected to load testing under extreme conditions in Porsche’s wind tunnel.

2021: The intelligent and connected vehicle of the future
The vehicle of the future has a perceptive ability, processes the impressions, learns and thus adapts increasingly well to requirements. It forwards information to the back end, where all fleet data is validated and optimized in the cloud. It then receives new software packages with improved and enhanced features “over the air”. As the overall vehicle developer, Porsche Engineering is implementing the new functions in their entirety, including software, hardware and the necessary networking. In its international network of locations, Porsche Engineering brings together in-depth software expertise, comprehensive know-how in the field of driver assistance systems and artificial intelligence, as well as cloud connectivity.